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ABSTRACT

This report describes the technical accomplishments during

the second year (Phase II) of a research program on the "Development

of an Ultrasonic Method for the Nondestructive Evaluation of

Residual Stresses." This program has been sponsored by the Air

Force Office of Scientific Research under Grant No. AFOSR 77-3457

for research entitled "Interdisciplinary Study on Advanced NDI

Techniques." The primary goal of this research program has been

the utilization of the temperature dependence of ultrasonic velocity

for the nondestructive evaluation of residual stresses in solids.

Basically, the temperature dependences of the elastic constants of

a solid are due to the anharmonic nature of the crystal lattice,

and are directly related to the coefficients of higher-order terms

in the strain energy function. A measure of the temperature

dependence of the ultrasonic velocity can, therefore, be used to

evaluate the state of internal stress in the solid.

During this second year funded for the period 30 September

1978 through 29 September 1979, the sensitivity of the temperature

dependence of ultrasonic longitudinal velocity to applied elastic

stresses (below yielding) has been studied. The study is performed

on two types of commercial aluminum (2024-0 and 6063-T4), and one

type of commercial copper (CDA 110). Again, the results of this

study show that the velocity changes linearly with temperature,

and the slope of the linear relationship decreases linearly as the

amount of applied stress is increased within the elastic limit of

the specimen under investigation. The maximum decrease in the

\I -1-



temperature dependence in aluminum and copper are respectively

23% which occurred at a stress of 96 MPA, and 6% which occurred

at 180 MPA.

The results obtained on aluminum are then used to determine

the change as a function of distance of the tangential component of

the stresses developed when an aluminum rod is shrunk fit into

a slightly smaller eccentric hole drilled in an aluminum disc.

Excellent agreement is obtained between the stress distribution

determined by the temperature dependence method and that computed

using a partial differentiation from a single stress function.
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INTRODUCTION

1. General Considerations

Residual stresses are those contained in a body which has no

external traction or other sources of stress, such as thermal

gradients or body forces. When the body is externally loaded,

these stresses are called internal stresses, and accordingly,

residual stresses may be considered as a special case for vanishing

external loads. Residual stresses result from non-uniform plastic

deformation which includes cold working, forming, forging, heat

treatment, etc. Their presence in manufactured components plays

an important role in determining the behavior of the component when

it is subjected to service loads and environment.

It is important to distinguish between two kinds of residual

stresses, namely, the macroscopic stresses which extend over dis-

tances of the order of millimeters or greater, and the microscopic

stresses which act over short distances and are highly localized

from point-to-point1 . The macroscopic residual stresses vary con-

tinuously through the volume of the body and at any point are the

combination of the components of stresses in the three principal

axes. The microscopic residual stresses (internal stresses) vary

greatly from grain to grain and are important to dislocation motion

and structure which control many of the material properties. From

dislocation theory, it is known that internal stress is proportional

to the squaro root of the dislocation density and is also related

to the flow stress of the solid
2 ,3

Only in the case of surface stresses in components made of

crystalline materials, can nondestructive evaluation of residual

-3-
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4

stresses be performed by the X-ray diffraction 4 . Although con-

siderably inproved in the last ten years, this method still suffers

from serious problems which severely restrict its applications.

Ultrasonic methods appear to hold the best promise in measurements

of the bulk residual stresses in both crystalline and non-crystalline

materials At present, there are three approaches, namely

. 6 7 8,9dispersion , birefringence , and harmonic generation in which

ultrasonic techniques are employed. All these approaches are

believed to utilize the anharmonic properties in solids; however,

the exact mechanism in each is not yet established.

2. Theoretical Background

Basically, the temperature dependences of the elastic constants

are due to the anharmonic nature of the crystal lattice, and can be

related to the pressure dependences of these constants. If we

consider the isothermal bulk modulus BT to be a function of pressure

and temperature, it follows that
10

aBT I rB IV _ BT I]i pBB 1 aT 1V 5T IP, (1)Tp $B-T  -- 6

where 6 is the volume coefficient of thermal expansion. Swenson11

has show empirically that for many materials

aBT J -0, (2)

and it can also be shown by differentiating (BS - BT) that

aB - - BT
2 T ap I (3)

to an accuracy of a few percent. Thus it follows that if Swenson's

rule is correct,

-4-



I - 1 aB l

T P 
(4)

to an accuracy of a few percent. The right-hand side can be cal-

culated from the measurements of the temperature dependence of the

second-order elastic constants. The left-hand side is calculated

from the third-order elastic constants Cijk , and equ. (4) is then
12

expressed as ,

aB cl + 3c 1 1 2 + 3c 1 1 3 + 2c1 2 3] (5)

13 1
More rigorous relationships can be derived 1 3 l4 for the temperature

dependence of the longitudinal or the shear modulus which is related

to the temperature dependence of the ultrasonic velocity v as,

6&M= 2 3 v
6T 6(6)

From this general argument, it can be seen that the temperature

dependence of the ultrasonic velocity (Longitudinal or shear) is a

measure of the anharmonic effects generated when the solid is sub-

jected to a stress. A wide range of values for the apparent third

order elastic constants were obtained in copper when measurements

were made on specimens with different dislocation contributions10 .

Changes in the anharmonic properties due to the presence of internal

stresses can therefore be detected by the changes in the slope of

the relationship between the ultrasonic velocity and the temperature
1 5'16

This slope can be determined with a high accuracy as its value

depends only on measurements of the relative changes in the velocity

and not on the absolute values.

-5-



EXPERIMENTAL APPARATUS AND PROCEDURE

2.1 Specimen Preparation

Commercial aluminum of the types (2024-0 and 6063-T4) and

copper of the type (CDA 110) are selected for the present investi-

gation. Specimens were made in the form of rods of 0.95 cm in

diameter and 1.29 cm in length, to be suitable for ultrasonic

measurements. The two faces of each specimen are then polished to

be flat and parallel to within two thousandths of a centimeter over

the whole surface.

Some of the specimens, both aluminum type (2024-0) and copper

type (CDA 110), were placed in a vacuum furnace for annealing

before ultrasonic measurements were undertaken. They were kept in

the furnace for four hours at a temperature of 4500C and a pressure

of 10- 6 Torr. This is followed by furnace cooling to provide stress

relief to these specimens. The rest of the aluminum type (6063-T4)

and the copper type (CDA 110) specimens were employed as received.

-6-
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2.2 Stress-induced System

The equipment used to apply external stresses on the specimens

is shown in Fig. (2.1). It consists of a split collar of inner

diameter and height closely equal to those of the specimens used.

The collar was made of brass in order to minimize the effect of

differences in thermal expansion during the temperature range

(2800 - 2000K) covered in the temperature dependence measurements.

In addition, few drops of high viscosity oil (46500 cs.) was

introduced between the screws and the collar, which proved to be

effective in keeping the stress applied by tightening the screws of

the collar, and simultaneously measuring the change in the diameter

of the specimen.

The change in the diameter of the specimen due to the appli-

cation of stress is measured by means of a shadow-graph purchaesd

from Nippon Kogaku K. K. company in Japan. The main principle of the

shadow-graph is that the transmittance coefficient is different for

different material, and thus the interface between the specimen

(aluminum or copper) and the collar (brass) is obviously distinguish-

ed. A change in the diameter of the specimen can be visualized

and accurately recorded on the screen of shadow-graph with an

accuracy of + 5%.

-7-
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Fig. (2.1) Holder used to apply compressive stress to
specimen.



2.3 Pulse Echo Overlap Method and Apparatus

The method utilized in the ultrasonic velocity measurements

is the "Pulse Echo Overlap" (P. E. 0.) which was originally developed

by May (17) and further described by Papadakis (18). In this

method, a single transducer acts alternately as a transmitting

and receiving transducer. At regular intervals of time, the rf

pulsed oscillator imposes a short burst of high-frequency alter-

nating voltage on the transducer which is coupled to the specimen.

Through the piezoelectric effect of the quartz transducer, this

pulse of alternating voltage converts into a pulse of mechanical

vibration having essentially the same frequency as that imposed

by the alternating voltage. These stress waves travel through

the specimen and return as they encounter a reflecting surface

that is perpendicular to the direction of propagation. Upon reach-

ing the transducer through the couplant, the returning pulse causes

the transducer to vibrate, and induces an alternating electric

voltage which is instantaneously amplified and shown on the oscillo-

scope.

Fig. (2.2) displays the block diagram of the apparatus used

in this investigation. A pulse of approximately 1 p sec duration

of variable pulse-repetition rate is generated by the ultrasonic

generator and impressed on a transducer of fundamental frequency

10 MHz which is acoustically bound to the specimen. The reflected
S

-9-
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rf echoes are received by the same transducer, amplified, detected,

filtered, and then displayed on the screen of the oscilloscope.

In general, the whole set of instrumentation can be considered

as a delay-line technique which means that the delay line produces

an exactly overlapped picture of the two 10 MHz modulated echoes

only when the triggering frequency rate of the oscilloscope is

equal to the riciprocal of the round trip time of the ultrasonic

pulse traveling in the specimen. It also means that each delayed

time period critically equals the time period between the two echoes,

when they are superimposed. This time is determined by the frequency

of the pulsed oscillator when the correct cycle-to-cycle match is

achieved. This frequency is read on the electronic counter to an

accuracy of I part in 105. The ultrasonic velocity is then cal-

culated using the relationship V=21f, where 1 is the length of the

specimen. X-cut or Y-cut quartz transducers of 0.125 inch diameter

and of fundamental frequency 10 MHz are used in this study. The

X-cut transducers are used to produce longitudinal (compressional)

waves, while Y-cut transducers are used to produce transverse

(shear) waves. The transducer is coupled to the test specimen by

a thin layer of highly elastic viscous Nonaq stopcock grease.

*1 -Il-



2.4 Temperature Control System

The temperature control system includes four main parts; namely,

cryogenic dewer, vaporization heater, mechanical vacuum pump and

potentiometer. All these combinations are to ensure extremely

small temperature gradients, high vaccum insulation and very accurate

temperature measured over the range between 350 and 4.20 K.

The cryogenic dewer was obtained from the Andonian Cryogenics,

Inc., Newtonville, Massachusetts. A diagram of this cooling system

is illustrated in Fig. (2.3). During the test, the specimen and

the split collar is mounted on the sample-mounting platform (U)

and inserted to the sample zone in the dewer. Liquid nitrogen is

added directly to the helium reservoir which passes through the

capillary tube to the lower end of the sample chamber. The dewer

also has a heat exchanger (N) and a thermocouple (V) which provide

the adjustment and the measurement of the temperature. Temperature

control of the whole system is obtained by establishing a slight

excess cooling rate with the throttle valve, and adding just

sufficient electrical power to the vaporization heat to bring the

sample to the desired temperature level. The potentiometer along

with the copper-constantan thermocouple enabled the measurement

of the temperature to an accuracy of +0.1 0 K.

-12-
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LETTER IDENTIFICATION FOR FIGURE (2.3)

A Electrical Feedthrough

B Off-uas Port

C Top Works

D Helium Fill & Vent

E Nitrogen Fill

F Nitrogen Vent

G Dewar Body Outer Shell

H Nitrogen Reservoir

I Helium Well

J Vacuum Insulation

K Nitrogen Temperature Radiation Shield

L Outer Tail

M Sample Zone

N Heat Exchanger

O Vaporization Heater

P Capillary

o Throttle Valve

R Throttle Valve Stem

S Throttle Valve Top Works

T Sample Teperature Control Heater

U Sample Holder

V Cu-Const. Thermocouple

W Sample

-14-



2.5 Measurement Procedure

Several steps are followed to obtain the temperature dependence

of the ultrasonic velocity ( dV ). The procedure is as follows:
dT

a) With the specimen properly located in the sample holder,

the apparatus (previously described) is adjusted to transmit

the rf pulses to the transducer. The reflected echo-train

is displayed on the screen of the oscilloscope and two

of the echoes are then chosen and overlapped.

b) The sample holder is then placed inside the cryogenic

system which is used to maintain the temperature of the

specimen at any desired value between 200 and 300*K. Liquid

nitrogen is then added to lower the temperature of the

specimen.

c) The liquid nitrogen is allowed to flow inside the specimen

chamber where the temperature of the specimen is checked

by means of the copper-constantan thermocouple attached to

the base of the sample holder.

d) After the specimen has been cooled to the desired tempera-

ture, no more nitrogen is allowed into the specimen chamber.

The voltage of the power supply, connected to the 5 watt

resistor (vaporization heater) at the inside bottom of the

specimen chamber, is then turned on. The power input is

regulated so that a rate of heating of 1 degree per 4

minutes is maintained.

-15-



e) The two originally selected echoes are adjusted to overlap

on the screen of the oscilloscope and readings of tempera-

ture and overlap frequency are recorded. As the temperature

of the specimen increases, changes in velocity are directly

detected from the phase shift of the two displayed echoes.

f) After approximately fifteen minutes, the two echoes are

overlapped again by adjusting the frequency of the C. W.

oscillator. The frequency as well as the temperature are

then recorded.

g) The previous step is repeated several times as the specimen

is allowed to warm up.

h) At any fixed temperature, the velocity is calculated by

using the relation,

V = 21 f (2.1)

where 1 is the length of the specimen and f is the fre-

quency. When the measurements are made using an X-cut

transducer, equation (2.1) gives longitudinal velocities,

while transverse velocities are obtained using a Y-cut

transducer. The accuracy in measuring changes in the

ultrasonic velocity is estimated to be 1 part in 105.

i) The data obtained for velocity and temperature are then

processed through a computer (IBM 360) to acquire the slope

1-16-
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of this relationship using a least mean squa- The computer

program used for the determination of the slope is shown

in Appendix I.
j) Before another set of velocity measurements are made, the

specimen is placed into the brass collar. High viscosity

oil (46500 cs.) is put between the screws at the sides of

the walls and the collar in order to keep the applied

stress uniform and constant during the measurement. The

two screws are tightened in order to apply the compressional

stress on the specimen. The change in the diameter of the

specimen, Ad, is measured by the shadow-graph and the

amount of applied stress a is calculated using the relation-

ship

a E z Ad (2.2)
d

where E is the Young's modulus and d is the original dia-

meter of the specimen.

k) Steps (a) through (j) are now repeated to obtain a new set

of data while the specimen is subjected to the stress.

After ultrasonic measurements are finished, the diameter

of the specimen is measured again to ensure that the applied

stress is within the elastic limit.

1) The specimen is then subjected to a higher stress level,

however, within the elastic limit, and a new run is made,

following the same procedure.

-17-



2.6 Examples of Measurements

Table (2.1) contains typical examples of the results represent-

ing the variations of the longitudinal ultrasonic velocity in

aluminum as a function of temperature. The experiment is performed

while the specimen is subjected to zero stress. The two sets of

measurements are made on the same specimen, in order to determine

ther peoductibility of the values of the temperature dependence.

The table in des the values of the longitudinal velocity (Y),

measured at temperatures ranging between 1800 to 260 0K (X). Also

included in the table arethe recalculated longitudinal velocity

(column 3), the deviation (col u.4) and the deviation squared

(column 5). These quantities are obtained as the computer data

output resulting from the least mean square calculations.

The data obtained from the two runs yield values of the

best fit for the slope of the temperature dependence of the ultra-

sonic longitudinal velocity (dV-L/dT). These values are -0.108

and -0.111 in units of m/s.K, for the first and the second run

respectively. From these data, one can see that the measurements

of the temperature dependence of the ultrasonic velocity can be

obtained with an accuracy of ±2%. Changes in (dV) bigger than
dT

2% could be detected and measured.

-18-
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RESULTS

3.1 Aluminum

The velocity of longitudinal ultrasonic waves propagating

along the axis of the rod was measured as a function of temperature

on five aluminum specimens denoted A, B, C, D and E. The measure-

ments were undertaken while the specimens were subjected to various

amounts of compressional stresses applied in a plane perpendicular

to the direction of propagation of the ultrasonic waves. Typical

examples of the results obtained on specimen E are shown in Fig.

(3.1), where the longitudinal velocity Vt is plotted vs termperature

T, at the stresses 0, 27.6, 46.2 and 75.8 MPa. From these data,

one can see that the longitudinal velocity increases linearly with

the lowering of temperature, and the slope of this linear relation-

ship between longitudinal velocity and temperature decreases as

the applied stress a is increased. The absolute value of the velocity,

however, is increased with the increase of the applied stress, in-

dicating that the specimen becomes stiffer when it is subjected to

compressional stresses. The least mean square method was used

to determine the slope of the straight line dV which best fits

-20-
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ALUMINUM 6063- T4
SPECIMEN E

I-

0
-jLU

-j

z

II-

z
0 75.8 MPo
-j

o 46.2 MPG
o1 27.6 M Pa

0 0.0 MPa

I I I I I

160 180 200 220 240 260 280

TEMPERATURE [K]

Fig. (3.1) Effect of applied compressive stress on the
temperature dependence of ultrasonic longi-
tudinal velocity in aluminum. Stress is applied
in a plane perpendicular to the direction of
propagation of the ultrasonic waves
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the experimental data representing V vs T. The accuracy in deter-

mining the temperature dependence of longitudinal velocity by this

method is estimated to be + 2%.

Table (3.1) lists the results obtained on the five aluminum

specimens investigated in this work. The table includes the values

of the temperature dependence of the longitudinal velocity, measured

at stresses ranging between zero and the yield stress of the specimen.

Because the values of the temperature dependence of ultrasonic longi-

tudinal velocity at zero stress were found to vary among specimens

investigated, the relative change in the temperature dependence,

6, due to the application of stress was calculated, and its value

are listed in column 4 of Table (3.1). These values of A are cal-

culated from the relationship,

rdV] [dVi
72LMJ oLdT a

f dV4 )1 (3.1)d- -jo

The variations in the temperature dependence measured on these

specimens at zero stress are believed to be due to the differences

in residual stresses in these specimens, even after annealing.

Aslo included in this table, is the value of the temperature de-

pendence of the longitudinal velocity at zero stress obtained on

annealed pure aluminum (99.999%) (15) which is smaller than any

-22-



Table (3.1) Effect of applied compressive stress on the tempera-

ture dependence of ultrasonic longitudinal velocity in aluminum.

Stress is applied in a plane perpendicular to direction of

propagation.

Specimen Applied Stress - t (m/s.K) a %
(MPa) dT

A (2024-0) 0.0 0.923 0.0

21.4 0.878 4.9

B (2024-0) 0.0 0.957 0.0

37.2 0.856 10.6

C (2024-0) 0.0 1.007 0.0

44.1 0.908 9.8

D (6063-T4) 0.0 1.111 0.0

94.5 0.866 22.1

E (6063-T4) 0.0 1.066 0.0

27.6 1.0o0 5.5

46.2 0.955 10.4

75.8 0.875 17.9

Pure, Annealed 0.0 0.847
Ref. (15)

-23-



of the temperature dependences measured on these commercial specimens

at zero stress.

The results in Table (3.1) indicate that the temperature de-

pendence of longitudinal velocity decreases as the amount of

compressional stress is increased. The relative changes in the

temperature dependence, obtained on all five specimens investigated,

are plotted in Fig. (3.2), as a function of stress applied. The

plot shows that all points lie on a straight line which passes

through the origin. This indicates that, regardless of the type

of aluminum used, the relative change in the measured temperature

dependence is a linear function of the applied stress. The slope

of this linear relationship is 2.4 x 10-3 per MPa, which yields

a maximum change of 23% at a stress of 96 MPa.

The effect of external stress on the temperature dependence
dV

of the shear velocity -s was investigated in the aluminum

specimens D and E. The measurements were performed when the ultra-

sonic waves were propagated along the axis of the specimen and

polarized in the plane in which the stress was applied. Typical

examples of the results obtained on specimen E are shown in Fig.

(3.3), where the shear velocity V. is plotted vs temperature T,

at stresses 0, 40.7 and 67.0 MPa. Again, the shear velocity

increases linearly as the temperature is lowered. However, the

slopes of the velocity as a function of temperature remain unchanged

as the amount of external stress is changed. The results of the

-24-
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ALUMINUM

20- LONGITUDINAL VELOCITY

R

_15

z
w
z

z
-,g

w

>' A B( 2024-0)
~IO +
5-& A (2024-0)

s- ,o/+A B (2024-0)

w D (6063-T4)

+ E(6063-T4)

0 25 50 75 100 125
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measurements obtained on specimens D and E are included in Table

(3.2), along with the value of the temperature dependence of shear

velocity at zero stress, obtained on pure annealed aluminum, in an

earlier study (15). The relative changes in the temperature depend-

ence of the shear velocity, acquired on the two specimens D and E,

are plotted in Fig. (3.4), as a function of stress applied. From

the results, it is seen that, within the experimental error, +2%,

found in determining the temperature dependence, the temperature

dependence of shear velocity in aluminum remains unchanged when

external elastic stress is applied in a plane which contains the

polarization vector of the ultrasonic waves. This may lead to the

conclusion that changes in the temperature dependence of the ultra-

sonic velocity occur only when the directions of stress and polari-

zation are perpendicular to each other.
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Table (3.2) Effect of applied compressive stress on the tempera-

ture dependence of ultrasonic shear velocity in aluminum. Stress

is applied in a plane perpendicular to the propagation direction.

dV
Specimen Applied Stress - S(m/s. K) %

(MPa) dT

D (6063-T4) 0.0 0.737 0.0

72.4 0.751 1.9

96.0 0.758 2.8

E (6063-T4) 0.0 0.767 0.0

40.7 0.768 0.0

67.0 0.748 -2.5

Pure, Annealed 0.0 0.749
Ref. (15)
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3.2 Copper

Five copper specimens designated A, B, C, D and E are also

investigated in this work. Two of these five specimens were in

the annealed state, before any velocity measurements were undertaken,

while the other three were used as received. Due to the excessive

scattering of the ultrasonic shear waves, only the velocity of

longitudinal waves are measured on the copper specimens. This

scattering phenomena could be overcome by decreasing the frequency

of operation, howeverall the present measurements have been made

at a frequency of 10 MHz which is the lowest frequency available

in the equipment used. Typical examples of the relative changes in

longitudinal velocity V4 as a function of temperature T are shown

in Fig. (3.5). The measurements are made on specimen C at the

stresses.0, 100.7 and 179.9 MPa in the temperature range between

180 and 2600K. From this data, it can be seen that the longitudinal

velocity increases linearly with the lowering of temperature, and

the slope of this linear relationship between longitudinal velocity

and temperature decrease as the applied stress a is increased.

This occurs when the applied stress is within the elastic limit of

the specimen.

Table (3.3) contains the results of the temperature dependence

of ultrasonic longitudinal velocity obtained on the five copper

specimens when they were subjected to external stress applied in

a plane perpendicular to the direction of wave propagation. Also
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Table (3.3) Effect of applied compressive stress on the tempera-

ture dependence of ultrasonic longitudinal velocity in copper.

Stress is applied in a plane perpendicular to propagation direction.

dV
Specimen Applied Stress - __(m/s. K) 6%

(MPa) dT

A (CDA 110) 0.0 0.487 0.0

Annealed

23.4 0.484 0.7

205.4 0.463 4.9

B (CDA 110) 0.0 0.486 0.0
Annealed

117.2 0.468 3.6

C (CDA 110) 0.0 0.557 0.0

100.7 0.541 2.9

179.9 0.523 6.1

D (CDA 110) 0.0 0.509 0.0

59.3 0.502 1.4

131.0 0.496 2.5

E (CDA 110) 0.0 0.497 0.0

124.1 0.485 2.9

Pure, Annealed 0.0 0.495
Ref. (16)
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included in this table is the value of the temperature dependence

of longitudinal velocity at zero stress measured on pure (99.999%)

annealed copper (16). In this case the temperature dependence of

longitudi!4al velocity at zero stress is approximately equal to those

obtained on commercial annealed specimens, but considerably lower

than the temperature dependence determined on the as received speci-

mens.

Similar to the behavior observed in aluminum, the temperature

dependence of the ultrasonic longitudinal velocity in copper is

found to decrease as the applied stress is increased. The decrease

in the temperature dependence for the same stress is, however, much

smaller in copper than in aluminum. A plot of the relative change

in the temperature dependence of longitudinal velocity as a function

of stress for all five copper specimens, is shown in Fig. (3.6).

Again, a straight line which passes through the origin, is found

to represent the relative changes in the temperature dependence ofdv I
longitudinal velocity -- vs stress o. The maximum value of 6

obtained is about 6% at a stress of 180 MPa. The slope of the
-3

straight line is 0.25 x 10 per MPa which is approximately an order

of magnitude smaller than that calculated from aluminum data.
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DISCUSSION AND APPLICATION

4.1 Discussion of Results

The behavior of the temperature dependence of the ultrasonic

velocity as a function of the applied elastic stress for both

aluminum Fig. (3.2) and copper Fig. (3.6) suggests that the tempera-

ture dependence of the longitudinal ultrasonic velocity measured

at an applied compressional stress can be represented by

V dV - rd1L.dTla o = Ko
(dV
dTl o (4.1)

where dV is the temperature dependence at zero stress, and K

is a constant equal to 2.4 x 10 - or 0.25 x 10 - per MPa for aluminum

or copper respectively. Equation (4.1) relates the relative

difference of the temperature dependence of the longitudinal velo-

city with and without stress as a function of the applied stress.

The use of equation (4.1) in the determination of unknown

stresses in a specimen, requires the knowledge of the temperature

dependence of the ultrasonic velocity at zero stress in the material

from which the specimen was made. Theoretical calculations of the

value of the temperature dependence of the ultrasonic velocity at

-35-



zero stress are not available at present. This means that values

of this parameter should be either determined independently by a

separate experiment, or estimated from other appropriate results.

Measurements of the temperature dependence of ultrasonic velocity

at zero stress, made on different types of specimens Table (3.1)

and (3.2) have shown that this quantity differs considerably with

heat treatment, and to a lesser extent from one specimen to the

other. These differences are mainly due to the variations of inter-

nal stresses in specimens, even when they are given the same heat

treatment. Published data on the changes of the elastic modulii

with temperature (including those measured on single crystals) are

found to yield temperature dependences which vary considerably

among various researchers (19).

Measurements made on the same specimens under simular conditions,

have shown that the slope of ultrasonic velocity vs temperature can

be determined with an accuracy of -,2%. This quantity along with

Fig. (3.2) and Fig. (3.6) yield an accuracy of +8 MPa and +25 MPa

in determining bulk stresses in aluminum and copper respectively,

using the temperature dependence method. These values compare

favorably with 14 MPa reported by Smith et al. (20) using a

system for acoustoelastic stress analysis which is based on

pulse-echo-overlap transit time measurements. They are, however,

much larger than those (3.5 MPa) determined by Hsu (21) in his

measurements on aluminum plates using the acoustic birefringence

method. The accuracy reported by Blinka and Sachse (22) in their
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use of interference effects of the out-of-phase polarized waves

(0.25 MPa), to determine principal stress differences is of

instrument precision and does not describe the accuracy of the

method itself.

When the stress applied to the specimen was high enough to

cause yielding, the temperature dependence of the longitudinal

velocity was found to increase instead of further decreasing. This

occured in both aluminum and copper specimens, where the increase

in the temperature dependence of longitudinal velocity is increased

as long as the stress applied on the specimen was beyond the elastic

limits. These results are consistent with those obtained by Salama

and Ippolito (23) in their study on the effect of plastic deformation

on the temperature dependence of the ultrasonic velocity.
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4.2 Determination of Unknown Stresses

In order to examine the possibility of using equation (4.1)

to determine unknown stresses, the shrink fit method was employed

to introduce known stress distributions in a disc made of type

6063-T4 aluminum. The diameter of the disc was 3.50 cm while its

thickness was 0.79 cm. An aluminum rod of the same material was

shrunk fit into a hole drilled in the center of the disc. The

diameter of the hole was 0.50 cm, while that of the rod was 0.0064

cm larger. In order to fit into the cryogenic system employed to

control the temperature of the system, the disc was then machined

to its final shape shown in fig. (4.1).

a) Temperature Dependences

The stress generated in the disc due to the presence of the

rod can be represented by an axial component a, a radial component

a r, and a tangential component aT which are related by the relation-

ship, Ca = W r +T ) , where v is the Poisson's ratio. Three

independent measurements are undertaken to determine the values of

these components: the temperature dependence of the longitudinal

and the two shear velocities of ultrasonic waves propagating along

the thickness of the disc. The two shear velocities are measured

*with the polarization vector parallel to and perpendicular to the

radial line connectinq the center of the rod and the tip of the

circumference of the disc. These measurements, evaluate the

resultant of the stress components acting in a cylinder of cross-
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sectional area equal to that of the transducer used in the measure-

ments (0.08 cm 2), and of length equal to the thickness of the disc

(0.79 cm).

The results of the temperature dependences of the longitudinal

and the two shear velocities (dV&/dT), (dVs/dT) // and (dV s/dT)I

as a function of distance ranging between 0.45 and 1.60 cm are listed

in Table (4.1). These distances are measured between the centers

of the rod and the transducers. From this table, one can see that

the values of the temperature dependence of longitudinal velocity

at the four locations are equal to within +2%. This shows that

the stress component measured by the temperature dependence of the

longitudinal velocity, remains unchanged over the distance where

the measurements were performed. Analysis of stresses in the disc

used in the present investigation indicates that only the axial

component remains constant over that distance.

The data listed in Table (4.1) also show that the values of

the temperature dependences of the two shear velocities obtained

at the same distance, are equal to within 41%. This indicates that

the stress components measured by these two temperature dependences

at the same distance from the center of the rod, should be equal.

As a function of distance, however, the values of either of the

shear temperature dependences change considerably. Close to the

edge of the disc, where the radial or the tangential stress component

*is expected to be small, the temperature dependence is the largest,

-40-

- -'' - - . .. .. ,- h - . A- -[ -. -,,, -,.-



Table (4.1). The temperature dependences of the ultrasonic longi-

tudinal velocity (d-), the ultrasonic shear velocity polarized
dV

parallel to the radial direction ( )/ ) and the ultrasonic shear
dV

velocity polarized perpendicular to the radial direction. ( - ),

as a function of the radial distance R in the aluminum disc shown

in Fig. (4.1).

Radial Temperature dependence of ultrasonic velocity (m/s.K)
Distance
R (cm) -(dV /dT) -(dV /dT) -(dV /dT)

0.45 1.123 0.821 0.831

0.70 -- 0.770 0.756

0.95 1.088 0.868 0.849

1.15 1.113 ....

1.60 1.107 0.914 0.899
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and equal to about -0.9 m/s.K. This value decreases as the distance

from the cneter of the rod is decreased, and reaches a minimum around

0.7 cm. As the distance from the rod is further decreased, the

value of the temperature dependence of shear velocity is increased

again.

b) Calculations of Tangential Stress Component

The stress distribution in the disc shown in Fig. (4.1), can

be approximated by that arising in a circular disc with eccentric

circular hole shown in Fig. (4.2). This case has been discussed by

Jeffery and Filon (24), who showed, that, in the two-dimensional

case, the stresses may be derived by the partial differentiation

from a single stress function. In the absence of body forces, this

stress function X satisfies the linear partial differential equation

of the fourth order,

4X=0 (4.2)

4 2 2 2
where 4 = v .v , and v is the two-dimensional Laplacian

2/ x + /ay2

Michell (25) gave the general form of the stress-function in

polar coordinates, for which the co-ordinate curves are co-axial
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circles, and thus opened the way for the solution of the problem

of a circular disc with an eccentric circular hole. His stress

function is expressed as

4 4 (ha42 = 0

!4 +2 
2 +

aa 8 ae e (4 .3)

where the bipolar coordinates a, 0, are defined by

a + i$ = log x + i(y + a)
x + i(y - a)

(4.4)

In the above relation, x and y are Cartesian co-ordinates, a is a

positive real length, and h is a constant.

Jeffery solved equation (4.3) to obtain the distribution of

the tangential stress in a circular disc with an eccentric circular

hole (Fig. 4.2), subjected to inside radial pressure P. His solution

may be expressed as

2 [2 ( cso) -(R 2  d2 2
T = 2P R 2 1R2(R 2  - 2d cos) 2  - ( -

T(R 2 + R 2-R (R1  + d) 23[R2 - R d)J

where RI, R2 are the radii of eccentric circles, d is the distance

apart of their centres, e is the angle counterclockwise from the

principle axis. For a rod shrunk fit into the inside circle, P
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may be calculated from the relationship (26)

P= 1R ( 1 + V ) E

p 2
2 (4.6)

where p is the shear modulus, v is the Poisson's ratio, and e

is the difference between the diameters of the rod and the inside

circle.

Using the dimensions of R1 and d shown in Fig. (4.1), along

with a shear modulus p = 0.26 x 10- 5 MPa and a Poisson's ratio

v = 0.346, the tangential component of the stress aT was calculated

as a function of the radial distance. The calculation was made by

using equation (4.5), where for 8 = 0r, R2 takes values from 0

to R2 and for 8 = 18(, R2 takes values from 0 to (dI - R

The results are plotted in Fig. (4.1). From this plot one can

see that the tangential component in this disc is compressive near

the rod, equal to zero at approximately 0.4 cm, and becomes tensile

at larger distances. Between 0.4 cm and the circumference of the

disc, this component has a maximum at 0.6 cm of approximately 95 Ma,

which decreases to 1.4 MPa at the circumference. The values of the

tangential stress component at the locations where ultrasonic

measurements were undertaken, are listed in Table (4.2). Also

included in this table, are the values of the temperature dependence

of the shear velocity, measured when the polarization vector was

perpendicular to the radial direction. At 1.6 cm (close to the
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circumference of the disc), (dV /dT) is -0.899 r/s. K and the

value of the tangential component is 1.4 MPa. Considering this

value of temperature dependence (-0.899 m/s. K) corresponds to the

stress calculated at this point (1.4 MPa), the values of the tan-

gential component at the other three locations are calculated using

equation (4.1), and the measured values of the temperature depend-

ence at these location. These values are included in column 4

of Table (4.2).

c) Comparison between Experiment and Calculations

From Table (4.2) and Fig. (4.1), one can see that the agreement

between the values of the tangential component, and those cal-

culated using Jeffery's equations is very good considering the

approximations made in calculating these stresses. The deviation

between the calculated stress and that determined from experiment

becomes larger at distances close to the eccentric rod. It is

probable that this gradual discrepancy is due to the fact that the

2cross-sectional area of the transducer (0.08 cm ) used in the

measurements determines the average tangential stress components

where the slopes of the stress distribution curve change abruptly.

Unfortunately, no comparison could be made between radial

stresses determined from the temperature dependence measurements

and those calculated from elasticity theory, which are difficult

to compute for an eccentric hole in a disc. Nevertheless, the
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jble (4.2). Comparison between the calculated values of the

tdnujential stress component and those determined using the ex-

perih entaI VdlueS of (dVs/dT).

dV
I:adi a I -(dlS-)I (in/s.K) Applied Stress Applied Stress

D)ista nce (Calculated in (Measured in

k (cm) MPa) MPa)

u.45 0.831 34.0 44.8

0.10 0.756 74.4 69.0

0.95 0.849 22.8 22.1

1.6U 0.899 1.4 1.4
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values of (dV /dT) listed in Table (4.2), indicate that thes //"

distribution of the radial stress component along the axis OX (Fig.

4.1) will be similar to that of the tangential component. At the

circumference, u will be equal to zero, increases to a maximum

compressive value at R - 0.7 cm, an then drops sharply to zero

at R - 0.4 cm. As a function of distance, the sum of the tensile

tangential and the compressive radial components (aT + ar ) should

be constant, as indicated from the small variations found in the

measurements of the temperature dependence of longitudinal velocity

listed in Table (4.2). Values of this quantity determine the axial

component of the stress a which is equal to v(oT + Jr ). The sum

of the tangential and the radial stress components are expected to

be small, as the value of (dVt/dT) listed in Table (4.2) are very

close to those measured on specimens D and E of Table (3.1) at

zero stress.

4
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I. Introduction

The general objective of this project is to develop further the

rational basis for electromagnetic methods of nondestructive evaluation,

particularly in relation to their use as means of quantitatively charac-

terizing performance related properties of structural materials. Attention

is presently focused on eddy current methods and microwave methods.

II. Summary of Progress

Progress made to date is briefly summarized below. Further details

are presented in Appendices A and B which are the texts of technical

papers which have been or are to be submitted for publication in appropriate

journals or technical conference proceedings.

A. Eddy Currents

The main effort here has been in modelling mathematically the behavior

of an idealized one-turn coil carrying a harmonically time-varying current,

in the presence of either a cylindrical conductive core or a planar conduc-

tive half-space. Tha aim here is to avoid reliance upon a "brute force"

numerical approach, but instead to find approximate analytic solutions

from which it is more straightforward to discern both the qualitative and

quantitative effects of variations in the important parameters of the

situation, e.g., coil radius, frequency of the impressed current, lift-off,

and conductivity of the specimen. Although these problems are straiqht-

forward to formulate and formally solve as boundary value problems of the

vector potential, the resulting formal expressions are formidable integrals,

7 1and the usual recourse is to evaluate them numerically for selected values

of the associated parameters. We have made an asymptotic expansion of a

factor of the integrand (essentially a reflection coefficient) which, while
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still requiring numerical evaluation of certain integrals which appear as

coefficients, does result in an analytic expression for the coil impedance

as a function of the major parameters of the problem. This expression is,

however, limited in validity to the case where skin depth is small compared

to coil radius or lift-off. Remedies for this restriction are presently

being researched.

Another topic being pursued is the calculation of the quantitative

effect of discrete flaws (voids of nonconducting inclusions) on the

vector potential. Applying the conventional formal theory of scattering

we obtain the relation

_+ 6 ) + _. +4 3-r
A(r)-A (r) = fo 0 G(r,r') . A(r')d r'

Vf

where A is the perturbed vector potential, A is the unperturbed vector0

potential (i.e., in the absence of the flaw) G (r,r') is the (diadic)
0

Green's function for the unperturbed case, K is wu0 a, and Vf is the

volume of the flaw. The first step in the solution of this integral

equation is to obtain Go, which is the Green's function for a harmoni-

cally oscillating electric dipole inside the conductive specimen. To

the best of our knowledge this problem has not been solved, even approx-

imately, except in special cases (such as at points far from the dipole)

not applicable in the present case. We are continuing to work on this

problem.

H. Microwave Testing

To this point we have investigated the use of surface electromagnetic

waves (SEW) to determine the thickness and dielectric constant of a
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dielectric layer supported by a planar conductive substrate. Analysis

and experiments at approximately 10 GHz have established the feasibility

of this in the case where the dielectric material is "good," i.e., a

low-loss material. We consider that the only remaining problem in this

area is to extend the results to include dielectric materials with non-

negligible losses. (The application would be to structural metals with a

thin protective coating of dielectric material.) Also, when extended to

higher frequencies (e.g. 100 GHz), it may be possible to detect discrete

flaws in such dielectric coatings, and possibly to detect flaws in the

conductive substrate.

III. Plans for Future Work

A. Eddy Currents

Significant progress in the theory of eddy current NDE depends upon

attaining two objectives, both of which we shall work toward. First, a

better method of analytically approximating the gross coil impedance is

needed. We think that success here hinges upon finding a tractable repre-

sentation of the impedance "reflection factor" other than an asymptotic

power series. Some preliminary considerations of a variational approach

seem promising, and we shall pursue this route. Secondly, an adequate,

tractable approximation to the previously mentioned Green's function

must be found. This is not easy, even for idealized geometries. The

difficulty is that one needs the Green's function near the metal-air

interface and near the source (i.e., near the flaw) whereitis difficult

to represent the Green's function by any simple approximation; both its

amplitude and phase change rapidly in the region of interest. A conven-

tional expansion in orthogonal functions runs into difficulty because
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many terms must be retained. A variational approach may succeed here

also, and we shall pursue this as well as anything else that suggests

itself.

On the experimental side we plan to interface our three-channel

eddy current system with the newly installed College of Engineering

PDP-11/70 real-time computing system (using funds from other sources)

and to use it to test the validity of our theoretical work.

B. Microwave NDE

Work planned at 100 GHz has been delayed by long delivery times

on essential components on order. (The 10 GHz work was undertaken

primarily because of this). Vendors now promise delivery early in 1980

and, this obtaining, we shall immediately undertake already planned

experiments on the scattering of 100 GHz waves by flaws in structural

dielectrics. In addition to basic scattering studies, we shall attempt

to image flaws by the synthesis of a large aperture using receiver

scanning and coherent detection techniques.
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APPENDIX A

IMPEDANCE OF A LOOP WITH A

CYLINDRICAL CONDUCTING CORE*

S.A. Long, C.G. Gardner, A. Zaman, and S. Toomsawasdi
Electrical Engineering Department

University of Houston
Houston, Texas

Abstract

The change in complex impedance between an ideal one-turn coil surround-

ing and coaxial with an infinitely long circular cylinder of conductivity

j and permeability ji and a similar coil without the core has been calculated.

From the exact expression a power series in (6/b)(6 - skin depth; b - radius

of core) has been developed. From this result the change in impedance of a

physically realistic multi-turn coil can be estimated with reasonable

accuracy. The theory permits a rational approach to optimization of the

dcsign of eddy current test coils and provides a basis for the later calcu-

lation of the effects of discontinuities in the core.

lhl work was Huppurtd ini part by the U. S. Air Force Office of Scientific

lli- rcr h throihi Gr-ant #"/-.)457.
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1. INTRODUCTION

A notable omission to the present body of knowledge dealing with eddy

current testing is the lack of an'adequate theoretical basis for the inter-

pretation of changes in the impedance of the test coil. This deficiency

remains, even though the fundamental theory is well established, owing to

the mathematical difficulties involved in solving the equations for practical

test-coil and specimen configurations. A complete solution in analytical

form seems to exist for only a few idealized cases which do not necessarily

approximate practical problems of current interest.

The program selected for study in this investigation is that of an

idealized one-turn coil (or loop) around and coaxial with a long, solid,

electrically conducting cylinder. This arrangement is illustrated in Figure 1

I I

CONDUC TING I
CORE- f

II
LOOP i

I

F I L y i
, I
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and shows tile loop with radius a and the core with radius b and conductivity

o. The theoretical treatment will assume that the core is infinitely long.

(This approximation should produce very small errors as long as the distance

from the position of the loop to either end of the core is large compared

to the dimensions of the loop itself). This problem has the advantage of

being simple enough to permit a meaningful approximate solution to be found

while still corresponding to a practical eddy current testing situation.

The results show how the complex impedance of the test coil changes when a

cylindrical specimen is placed inside the loop and how this impedance is a

function of the geometrical and material parameters of the cylindrical core.

2. THEORY

A theoretical treatment of a geometrically similar problem has been

previously reported by Islam. (I)  In this work, however, the emphasis was

on the radiation properties of the configuration and thus only a high fre-

quency approximation was attempted for the case of a magnetically permeable

cylindrical core. The case of interest in this work, that of an electrically

conducting core at much lower frequencies, may be attacked in a similar

fashion but is essentially a completely different problem. From Maxwell's

equations for time-harmonic fields one may derive the wave equation for the

magnetic vector potential A in terms of the impressed current density J.

V2 A + kmA =

U.41,u tLe sLatidard eddy current approximation of neglecting the displacement

current terms and recognizing that the vector potential has only a ; com-

ponent which depends on r and z, the left hand side of the equation becomes



V A (V A~ ~ (r A~
r r D z2 r2A A

A + 3 2A A ~
ar2 r ar r2 2~
[ r r2

Equating this expression to the source terms due to the loop current and

the induced eddy currents one obtains the equation for the vector potential

in each of the regions shown in Figure 1.

2 2 -oio0 6(z)6(a-r); r>b

3r2 r r 2 2r z

jwpaA r<b

where p0 is the permeability of free space, i0 is the magnitude of the iia-

pressed loop current, w is the angular frequency of the time-harmonic fields,

and p and u are the permeability and conductivity of the core. The presence

of the impressed loop current at z=O, r=a is represented by the two 6-functions.

The solution to tfie e quation may be found using a cosine transform.

A (r,z) = I g(r,k)cos kz dk

with the following functions defined for each of the three regions.

C L I I[/(k2+jK 2)r] r<b

g(r,k) C2 1 1 (kr)+C 3K1 (kr) b<r<a

C4 K (kr) r>a
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where 1I and K are the modified Bessel functions of order one, K = Wo,

and CI,C 2,C3, and C4 are constants to be determined by the boundary condi-

tions.

Since the quantity of primary interest ! : the vector potential in the

vicinity of the loop, the simplest expression is that for Region III for

which only C 4 needs to be found from the standard boundary conditions.

kb 1 (kb) I (y)-rl 0 (y)I 1 (kb)
C4 = i0 a (I (ka) + [--- I K (ka))

4I ka 1 1 (y)K 0 (kb)+y 0 (y)K 1(ka) 1

where 10 and K0 are the modified Bessel functions of order zero and

= (kb) 2+j(Kb).2 Using this expression the value of A along the loop

at z=O, r=a can be found.

O1 a [k1 at-wk /,l(Tf\TITMfl (kb

A 0ioa I (ka)K (kr)dk + 0
A (0 1 1 0 kb 11(y)K0(kb)+yl0(y)K1(kb)

K2 (ka)dk
I

The first of these integrals can be shown to be exactly the contribution to

the vector potential due to the loop itself if the core were not present at

all. (This term is singular in nature.) The second integral is the contri-

bution due to the eddy currents and thus represents the difference in the

vector potential with and without the core present. This term now called

AA, may be expanded as an asymptotic series.

A L-j i dk + K2(kb) dkAA, J Kl(kb) 20

T2 (Y)kbK0 (kb)K
21 (ka) dk +...]

I0 K (kb)
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where T( y)
'Y 10 (Y)

It should be noted that the dependence of 6~A 0on the material parameters

p and a of the core is completely'contained in the T(y) term. Using the

asymptotic series for the modified Bessel functions the following expressions

can be found.

T(y) +
Y 2y 2

and Y 'jKb (1+j)

where the skin depth is given by 6 2 One may then divide the contri-

butions to A into real and imaginary parts.

POA ~ 0 a a +1 1 63 (a + aAA (-b A () +('N)N 1 ) b 4-( b) (N2 ( b) N3 (P,)

I a 1i~ {--6)~ ~ 2 1 a +

+ ) [N (a) + N 3 !) I}I

where the following integrals have been defined and are seen to be only a

function of Lte ratio a/b. (n =kb)

2 a

0(-b) =K.(

I b 3O K

- K ()Kri a

N ) bt
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N3(b 0 K4( ) dT)

The apparent change in the driving point impedance of the loop is

jw AA 2n1a

AZ = AR + ju3AL

From the previous expressions the changes in inductance and resistance can

be found to third order in 6/b.

AL = -21 1 - {No(a) -a 1 ()3 [N (a) + N
ab b 1 Nb 4b 2b 3b

AR = 2wp 0 {a(A)Nl a) _ (6-) 2 [ a N (A) + + 163 [N
0 b 2 Nb1 b 2 b-~ [2 N1(b N2(b 4 b- [ 2(b

+ N3(bl,,

To obtain numerical values for AL and AR it is first necessary to evaluate

the integrals NO, NV N2 and N . Although they cannot be evaluated analy-

tically they can be found numerically for fixed values of the geometrical

parameter a/b. Once these integrals are evaluated the expressions are each

seen to be a power series in the parameter 6/b which contains the electrical

properties of the core material. One should note that for the case of a

perfectly conducting core (i.e. 6/b = 0)

aL = ----- N(b)

and AR =0.
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This is a reasonable result which shows a decrease in the inductance but no

change in the resistance since no losses are possible. The effect of a

large but finite conductivity is seen to diminish the amount of decrease

found for the perfectly conducting case and to add a finite, positive ap-

parent resistance.

3. RESULTS

To facilitate the evaluation of AL and AR for practical cases the in-

tegrals N0, N1, N2, and N3 were evaluated for several values of a/b varying

from a value of 1.05 to 2.0. Using these results the values of AR and AL

3
can be calculated through terms of order (6/b) . Accuracy of the results

depends critically on the assumption that 6/b remains small with respect

to one.

For the case of an aluminum core with a 3/4" diameter we find 6 = .0826//i

which for f = 50 KHz yields a skin depth 6 = 0.37 mm resulting in a value

of U/b = .0388. Thus for this practical case we are well within the assump-

tions used in the derivations.

To generaiLze the results somewhat the normalized quantities AR/wpa

and AX/wpa have been plotted in the remaining figures (6X = wAL). It should

be noted that each of these quantities are unitless. The most obvious

graphical presentations would be those of AR and AL versus the geometrical

parameter a/b and the material parameter 6/b. Unfortunately this direct

approach does not correspond to the usual parameters which may be subject

to change. Assuminig that t',e practical testing situation consists of a

cylindrical sample moving through a fixed coil the quantities which may

change are actually the radius of the core b and the conductivity of the

core material 0. To illustrate the changes in impedance for variations in
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b about a nominal radius b0 , the graphs in Figures 2 and 3 are shown. In

Figure 2 the normalized change in resistance is shown versus the quantity

b/b0 . The nominal radius b0 may be any value as long as our restriction

of 6/b0 << 1 is satisfied. The value of a/b0 = 1.25 was chosen to be re-

pres.z. tive of a real coil design which couples strongly with the core.

A f;L.ily of curves is also shown for several values of 6/b0 . It is noted

that all the curves approach zero as b/b0 is decreased and become very

large as b/b0 approaches 1.25 which is the position of the driving loop.

A similar set of curves is shown in Figure 3 for the change in reactance.

Again as expected the change in reactance approaches zero as the core radius

decreases and becomes a very large negative value for b/b0 near 1.25. It

should be noted that changes in the parameter 6/b0 have a relatively small

effect on AX as compared to their effect on AR. The same functional de-

pendence i also illustrated in Figure 4. The solid curves show the nor-

malized resistance plotted versus the normalized reactance as b/b0 is varied.

Changes in the complex impedance can be seen for varying radii for each of

four values of 6/b0.

The effect of changes in conductivity of the core on the resistance

and the reactance are shown in Figures 5 and 6. The conductivity is again

normalized with respect a G0 near that of aluminum. (However, a0 is actually

arbitrary as long as the condition that 6/b << 1 is still satisfied). The

limiting behavior is again logical showing the resistance approaching zero

fo: large conductivities and zero for very small values. The reactance is

seenr to approach the "perfect conductor" case as a increases. The region

where o becomes small violates the assumption on 6/b and therefore the be-

havior of these curves ther has no meaning. The resistance versus the
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reactance is shown in the solid lines of Figure 7. As the conductivity de-

creases from the perfect conductor case AR is seen to increase while AX be-

comes less negative. Each of these curves terminates in the region where

the assumption that 6/b << 1 begins to break down.

With the aid of Figures 4 and 7 one may ascertain the behavior of changes

in both the resistance and reactance for any percent change in either the

radius of the core or its conductivity. The functional change in impedance

is quite different for the two parameters. This characteristic may therefore

be utilized in practical testing to determine changes in sample radius and

conductivity.

4. REFERENCE

(1) Islam, A. M., "A Theoretical Treatment of Low-Frequency Loop An.ennas
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APPENDIX B

The Impedance of a Single-Turn Coil Near

A Conducting Half-Space

Afroz J. M. Zaman, Stuart A. Long and C. Gerald Gardner
Department of Electrical Engineering

University of Houston
Houston, Texas 77004

Abstract

The change in complex impedance between an ideal one-turn circular

coil located above and parallel to a conducting half-space with respect

to a similar isolated coil has been calculated. From this result a

series expansion of the integrand allows the solution to be approximated

by terms expressed as complete lcli ptic integrals. Results have been

calculated for the change In impedance as a function of the lift-off

distance and the conductivity of the half-space for a coil of represen-

tative radius.

Ihis work was supported in pa IrL by the U. S. Air Force Office of Scientific

Research through Grant No. 77-3457.
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1. INTRODUCTION

The eddy current method of nondestructive evaluation entails the in-

duction of eddy currents in a conductive test object by a time-varying

field produced by a suitable distribution of impressed currents (via an

excitation or primary coil), and the detection of the resultant field,

usually by an inductive search coil which may be either a separate

secondary coil or the primary coil itself. (See Figure 1.) The method

is ordinarily used at frequencies sufficiently low to neglect effects

due to displacement current; hence a theoretical analysis entails calcu-

latitug either a transfer impedance for a primary coil and secondary coil

in the plesence of the test object, or the calculation of the self

impedance of a primary coil in the presence of the test object. In

practice one often needs only the change in impedance produced by the

test object or by changes in the nominal properties of the test object

(e.g. changes in its geometry or position with respect to the test coil

or coils, or distributed or localized changes in the resistivity of the

test object). The most general case, allowing arbitrary configurations

of primary and secondary coils and arbitrary test objects can be handled

onl.' by numerical methods. Certain idealized arrangements can be treated

iiadlyticall\ either exactly or in useful approximation. In virtually all

ua.. Of pr,ctical interest, the analysis eventually reduces to the

evaluation of certain integrals which cannot be expressed in closed form

i t r,,; ol st ndt;rd transc cadenta finct ions.

In this paper we discuss the case of a one-turn circular coil located

above and parallel to the surface of a homogeneous conductive half-space.

From the, standard boundary value problem approach we obtain the general

L1
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expression for the change in coil impedance, AZ, produced by the half-space;

A Its given in terms of an integral over a separation parameter. A series

expansion of one term in the integrand permits the integral to be expressed

as a series of terms each of which is expressible in terms of complete

elliptic integrals. The leading terms of this series approximate AZ

asymptomatically for sufficiently small values of skin depth of the half-

space.

The problem addressed here has previously been treated by Cheng [I]

who evaluated AZ by numerical methods for various choices of the relevant

parameters. Similarly, Dodd and Deeds [2] have devised a digital computer

program capable of handling circular test coils in the presence of layered

planar and coaxial cylindrical test objects. Such brute force numerical

procedures are valuable for design purposes, but have the disadvantage of

somewhat concealing the essentially simple manner in which the final result

depeuds upon the parameters of the problem. The approach taken here,

while less universal than the purely numerical approach; results in re-

latively simple, though approximate and restricted, formulas for 6Z in

terms of the basic parameters of the problem.

For illustrative and comparative purposes, some selected numerical

(eXamples are also given.

II. Theoretical Analysis

ie basic goometry of the problem is shown in Figure 1 and consists

(d a loop ot radius r0 oriented parallel to and at a distance i above a

homogteneous half-space of conductivity G. Beginning with the basic equa-U iol Ior tLe vector potential



2 2 6 (ro-r)3

V A + k A -p1i(t) r
0 r (1)

and noting the symmetry of the problem, it is seen that the only component

of the vector potential present is the circumferential component, A, and

that A is a function of r and z only. Making the usual low-frequency,

quasi-static approximation that the k A term is negligible for z>O, we have:

2o _ 2AI + 1 + aI - ' -= 0 for z>O (2)
3r 2  r r z 2  r 2

2'
and, with k = -jwpO for z<O

2 Aa 2 AS+--A + jwpOA = 0 for z<O (3)

ar2 r Dr z2 2
r

Solving by the separation of variables technique yields the following

expression for the general solution to Equations (2) and (3).

A (r,z) { [A(a)e Z+B ()e-aZI[g(I)J1(or)+D(o)Y1(ur)]da (4)

where x is the separation constant. Since z may become infinitely large

in the resicn z',., the coefficient A(s) must equal zero. Similarly in the

rtion z<0 B() must also equal zero, and since the origin is included in

.il regions, then D((x) must equal zero in each.

A (rZ) = 0B 1 e l (r)do z>>O (5)

Act~r~) ---

A A ( r ' z ) = C / U +H2 e_(Ie 1.7((xr)da £>Z>0 (6)
'P2 2 2



A (r,z) = 3e c I (a r)d a 
z<O (7)

O0

where a 2 = O2+jWPO.
1

Since the electric field is proportional to A,, the boundary conditions

for the tangential electric field can be satisfied by equating the values

of A 0 at the z = Z plane.

f° Ble-cJI (tr)dx = f (C 2ec+B 2e-k )J1 (rdo (8)

Multiplying both sides by the integral operator . . }Jl(a'r)rdr and using

the Fourier-Bessel identity [3]

J1 (ar)Jl (a'r)rdr - a (9)
O 1 1

gives the following result:

B 2 9 B2  -a'
a' -- '-e +-j-e (10)

or

Bl = C 2e + B2e

T'he rad ia I ('O1ponellt of t lie Mnct ic f ield can aisu ,c found from the VeCctor

,)ttLIIlLial ; 11 - A . i is diS.continuoU S ;It the position ot the loop
I r z P* r

(r=ro, z=Z) by an amount equal to the surface current density there.

As- Al A 2] = IiI 6(r-r 0) (12)
dz (b I z 2 0



or

_B9e- -cx2

-Be C2 - B2e - IrJ (ar O) (13

Similarly the boundary conditions may also be applied at z - 0 where bo

E and Hr are continuous, yielding

C2 + B2 = C3  (14

a 1

and C - B = --1 C (15
2 2 a 3

These four Equations (ii, 13, 14 and 15) can then be solved for the con

Bi, C2, B and C3 and used in Equations (5), (6), and (7) to e, .uate

vector potential.

Since our principle interest lies in evaluating the vector potentiL

at the location of the loop the most direct route is to evaluate the coi

stant B1 :

a1

B l 2rJl(ro) [ea + - (16

(1 + -)

Thus

jIr 0 (-az-ak) +2a . a- 1
A (r,z) - Je(+r).jd(ar)c [e + )Ida (17

2 - J1 a 0 i1(ar4-a

4 eIC Lwo 1crills in tle square brackets represent respectively the vector

potciutial due to the loop itself and that due to the currents induced i

the conducting plane. This second term due to the conductive half-spac
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will produce the change in impedance from the case of the isolated loop

to the case of the loop near the plane. This change in vector potential

is thus given by this second term.

AA~ (r,z) = r J (arO)Jl(Car)e-a(z+) (-l)da (18)
I 2 FO 1 0 1a+a 1

This change in vector potential can be used to calculate the change in

impedance due to the presence of the conductor by integrating the tangential

electric field around the position of the loop:

- E"dl 27 r 0
AZ = I = __-- AA 1 (r0 ,) (19)

since AE = -jwAAq1  .

2. 2 . -2 a 1).

AZ= rJ0J (axr )e ( )a (20)

The integrandfactor (a-. )/(a + essentially a reflection factor, has

modulus equal to or less than unity, the extreme value being assumed for
2

=0 ;nd (x=-. The integrand factor J2(aro) guarantees that the value of
1 r0

thc integral is negligibly affected by values of a greater than about, 10/r O .

P ractical values of r 0 are usually of the order of l0- 2m. For such values

3 -lI
of r0 the important range for a is 0O_<10 m , while the quantity wvO0

1= 2/(skin depth) 
2  is, in many practical cases, of the order of 107 (e.g.,

7 2
1fr aifuniintm :it 50 Klz, wp0 G = l.5x10 ). For such cases, aL /wpj a < 0.1,

L ,nd ('v-f ) (i+t ) may be expanded as a power series in /,I10

,|
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+ - 2 2 a + =-1 + (l-j)(a6) + J(ca6) 2 +

Vj-K jK 2

where 6 = /2 /w.5 and K v~i

We expect the series above to converge rapdily provided cx6«<l. As we

shall presently show, it is convenient to adopt r 0 as a characteristic

length. Since the value of AZ is determined almost entirely by values of

a for which ar 0<10, we have rapid convergence of the integrated series if

6/r « <1/10. Separating AZ into real and imaginary parts we have:

AZ = AR + jAX (22)

Ax= 2 f~2 - 2 axd 2 -j2  )2ak

= -O~r 1 (xr0 ) do 61 (ar )e a da} (24)
AR = viwu r0 2 6J 2(ar )e-2 ak ada - 6212(c)e- 2ak 2 x}(4

These changes in resistance and reactance can be represented by three in-

tegrals:

AX 7w 0 (I1 () -) 0) (25)

r 2 0r

0 (26)

whe re

P=291% (27)

and
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JI) J (oJ x-Xd, (28)

) = - d ( (29)

2 d2

d 2
3 d 2  0)(30)

Ii( ) is just the Laplace transform of J2(x) [4]:
1 1

I (W) = 1 QI(1 +_I 62) (31)

where QI1/2 is the Legendre function of the second kind of order 1/2.

12(6) is therefore given by

I2( ) = - (I + 1 62 (32)

where the prime indicates differentiation with respect to the argument.

The required derivative may be found from the recursion relation [51

jQ1 (x) - 1 ,2  (33)

(x2-I)Ql1/2 (X) =2 QI/2(x - 2 Q-1/2 (x )  (3

For convenience in evaluation, both Q1/2 and Q-I/2 may be expressed

in terms of complete elliptic integrals [5]:

(I/ , X ( 2 )I/2q ( 2 )1/21 1 [2(x+) 11/ 2E 1 _)11 2  (34)
Ixi/2 + (+l x+1

2 1/2 2 /2( i/2(x) :(--) KI (-L ) ] (35)

-121 ~ ~
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whure K(k) arid E(k) are respectively the complete elliptical integrals of

the first and second kind of modulus k:

71/2 2 2 -1/2
K(k) =  (1-k sin t) dt (36)

i r 2/2 1/2d

E(k) = (1-k 2sin 2t) dt (37)
f0

Values ot K(k) and E(k) may be obtained from standard tables or from readily

available computer software.

13() may likewise be reduced to an expression involving K(k) and E(k).

However, for most practical cases, the factor (W/r 0 )2 by which 13(8) is

multiplied is so small that the contribution toAR from the term proportional

to 3(W) is negligible.

III. Results

To illustrate the changes in impedance as a function of the lift-off

distance Z and the conductiviy 0, calculations were made for a loop of

radius r0 = 1.27 cm (diameter of one inch) at distances Z from .05 to 1.5

cim, and for conductivities from 0.1 to 4 times that of aluminum (o0= 3.8x10 7

mfho/mi. thesu results are shown in Figures 2 and 3 as a function of . for

various constant conductivities. The normalized dimensionless changes in

impedlance AX/wjir0 and R/or 0 are chosen as the quantities to be plotted.

lor all val,ies ot conductivity the value of AX/wjpr 0 is seen to approach a

i;rge inc,;itiVP Vl]l lc as Q decreases showing the known decrease in total

nd iI r~o. ;is thll loop approaches the plane. As X becomes large AX/wjlr 0

approaches zero as required. Similarly in Figure 2 AR/wipr 0 is seen to give

a large positive contribution for small R and approaches zero as Z becomes
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large.

To illustrate the effects of the conductivity on the changes in impe-

dance for several constant values of lift-off.the results for the same loop

are shown in Figures 4 and 5. The change in reactance AX/wpir is seen to
0

be very nearly independent of conductivity over the range considered. The

value of AR/wpiro, however, is seen to increase for lower values of a. This

resistance term, of course, approaches zero as the conductivity approaches

that of a perfect conductor.

Both the variations in resistance and reactance can be combined into

the one graph shown in Figure 6 by plotting AX versus AR. The solid lines

thus show the change in impedance as the lift-off is changed, while the

dashed lines show the variation with changing conductivity for constant

lift-off L.

The limiting values of AX/wpr0 for large values of a can be checked

bv comparing the calculated values with that of the case of a loop above

a perfectly conducting plane. Using image theory the mutual inductance

between two identical loops located a distance 2R apart can be calculated

[6]:

M = 2.54 Nr0

where N is a tabulated function of r0 and Z. The values of M and AL at

51 KtI; iro ( opared in Table 1. and quite good agreement is found.

0 IV. Conclusions

For tinc commonly occuring case where 6<<0.1 r0, the change in coil

indoctancc is tssenLtially the value that would occur if the substrate were

-- x
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perfectly conductive; AL is thus dominated by its dependence on lift-off.

The change in resistance is, for constant lift-off, proportional in first

order to skin depth (or, for constant frequency, proportional to the

square root of substrate conductivity); however, AR is also strongly de-

pendent upon lift-off. Second-order changes in AL and AR, due to small

variations in Z and a about nominal values, are well approximated by linear

functions of AQ and Ao, hence variations in AL and AR may readily be

interpreted in terms of corresponding variations in lift-off conductivity.
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List of Captions

Figure 1 Geometrical configuration of loop near a conductor.

Figure 2 Change in normalized resistance versus lift-off distance.

Figure 3 Change in normalized reactance versus lift-off distance.

Figure 4 Change in normalized resistance versus conductivity.

Figure 5 Change in normalized reactance versus conductivity.

Figure 6 Change in reactance versus change in resistance.

Tahle 1 Comparison of theoretical change in inductance to mutual

inductance for perfect conductor case.
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TABLE 1

AL M
(cm) AX (iH) (VIh)

2.5 1.0887 .01737 .01727

5.0 .5425 .00866 .00869

15.0 .07784 .00124 .00114

.
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